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Pattern matching is a powerful mechanism for writing safe and expressive conditional logic. Once primarily
associated with functional programming, it has become a common paradigm even in non-functional languages,
such as Java. Languages that support pattern matching include specific analyzers, known as pattern-match
coverage analyzers, to ensure its correct and efficient use by statically verifying properties such as exhaustive-
ness and redundancy. However, these analyzers can suffer from soundness and completeness issues, leading
to false negatives (unsafe patterns mistakenly accepted) or false positives (valid patterns incorrectly rejected).

In this work, we present a systematic approach for validating soundness and completeness in pattern-match
coverage analyzers. The approach consists of a novel generator for algebraic data types and pattern-matching
statements, supporting features that increase the complexity of coverage analysis, such as generalized algebraic
data types. To establish the test oracle without building a reference implementation from scratch, the approach
generates both exhaustive and inexhaustive pattern-matching cases, either by construction or by encoding
them as SMT formulas. The latter leads to a universal test oracle that cross-checks coverage analysis results
against a constraint solver, exposing soundness and completeness bugs in case of inconsistencies.

We implement this approach in Ikaros, which we evaluate on three major compilers: Scala, Java, and
Haskell. Despite pattern-match coverage analyzers being only a small part of these compilers, IKAROS has
uncovered 16 bugs, of which 12 have been fixed. Notably, 7 instances were important soundness bugs that
could lead to unexpected runtime errors. Additionally, Ikaros provides a scalable framework for extending it
to any language with ML-like pattern matching.

CCS Concepts: » Software and its engineering — Software testing and debugging; Functional languages;
« Theory of computation — Pattern matching.

Additional Key Words and Phrases: pattern matching, testing, bug, Haskell, Scala, Java, exhaustiveness,
redundancy, SMT solver

ACM Reference Format:

Cyril Moser, Thodoris Sotiropoulos, Chengyu Zhang, and Zhendong Su. 2025. Validating Soundness and
Completeness in Pattern-Match Coverage Analyzers. Proc. ACM Program. Lang. 9, OOPSLA2, Article 393
(October 2025), 27 pages. https://doi.org/10.1145/3763171

1 Introduction

Pattern matching is a powerful and ubiquitous language feature for safe and elegant handling of
control flow. It allows programmers to express conditions as patterns that match program values,
guiding execution flow accordingly. Traditionally an integral feature of functional languages,
such as OCaml and Haskell, pattern matching is now widely adopted in many modern languages,
including Rust, Scala, and C#. Even Java, starting from JDK 22, has incorporated ML-like pattern

Authors’ Contact Information: Cyril Moser, ETH Zurich, Zurich, Switzerland, cymoser@student.ethz.ch; Thodoris Sotiropou-
los, ETH Zurich, Zurich, Switzerland, theodoros.sotiropoulos@inf.ethz.ch; Chengyu Zhang, ETH Zurich, Zurich, Switzerland,
chengyu.zhang@inf.ethz.ch; Zhendong Su, ETH Zurich, Zurich, Switzerland, zhendong.su@inf.ethz.ch.

© 2025 Copyright held by the owner/author(s).
This is the author’s version of the work. It is posted here for your personal use. Not for redistribution. The definitive Version
of Record was published in Proceedings of the ACM on Programming Languages, https://doi.org/10.1145/3763171.

Proc. ACM Program. Lang., Vol. 9, No. OOPSLAZ2, Article 393. Publication date: October 2025.


https://orcid.org/0009-0006-3847-1088
https://orcid.org/0000-0002-9906-3073
https://orcid.org/0000-0002-7285-289X
https://orcid.org/0000-0002-2970-1391
https://doi.org/10.1145/3763171
https://orcid.org/0009-0006-3847-1088
https://orcid.org/0000-0002-9906-3073
https://orcid.org/0000-0002-9906-3073
https://orcid.org/0000-0002-7285-289X
https://orcid.org/0000-0002-2970-1391
https://doi.org/10.1145/3763171

393:2 Cyril Moser, Thodoris Sotiropoulos, Chengyu Zhang, and Zhendong Su

matching into its specification and implementation [Gosling et al. 2024]. This adoption reflects the
growing importance of pattern matching in mainstream programming [Cheng and Parreaux 2024].

Two key properties of a pattern-matching expression are exhaustiveness and non-redundancy.
Exhaustiveness ensures that a pattern-matching expression covers all possible values of the type
of the expression we match against. Non-redundancy guarantees that no pattern is shadowed
by a preceding one in the pattern-matching expression. These two properties provide numerous
benefits for both program correctness and efficiency. On the one hand, they prevent programmers
from unsafe usages of pattern matching, reducing the risk of runtime errors. On the other hand,
the compiler leverages these properties to perform aggressive optimizations, such as dead code
elimination, leading to more efficient code [Rust Team 2025].

To enforce exhaustiveness and non-redundancy, languages supporting pattern matching include
dedicated analyzers in their implementation, known as pattern-match coverage analyzers (PMC
analyzers for short), which verify exhaustiveness and non-redundancy at compile time. In case of
violations, these analyzers issue a corresponding warning to developers. To illustrate how these
warnings work in practice, consider the following Scala code and the question: Should the compiler
warn developers about potential issues, and specifically, is the match expression on lines 4-6
exhaustive?

sealed trait A
case class CC_A[T](a: T) extends A
val x: CC_A[Int] = CC_A(10)
val res: Int = x match {
case CC_A(12) => 0O
}

NG R W N =

No, the match expression is not exhaustive, as the value of variable x (line 3) is not covered by the
pattern CC_A(12) (line 5). The corresponding PMC analyzer should detect such issues and warn
developers about the missing cases (e.g., CC_A(_)). However, PMC analyzers can produce incorrect
results because of inherent limitations of their coverage checking algorithms [Graf et al. 2020;
Karachalias et al. 2015] or unexpected implementation defects [Chaliasos et al. 2021]. In the latter
case, these defects can lead to unintentional issues: (1) soundness bugs, where the analyzer falsely
accepts erroneous pattern-matching statements, and (2) completeness bugs, where it incorrectly
issues pattern-match coverage warnings, preventing well-written code from compiling.

In the above example program, the coverage analyzer of the Scala compiler (version < 3.7.0)
exhibits a soundness bug, as it mistakenly marks the match expression as exhaustive, failing to
report a corresponding warning to developers. Soundness and completeness bugs in pattern-match
coverage analyzers lead to runtime errors or increase development effort by confusing developers
with misleading reports. For example, running our Scala program leads to a runtime MatchError
failure, which should have been caught at compile time.

Recent advancements in random program generation offer promising solutions for testing
programming language implementations and program analysis tools [Chaliasos et al. 2022; Even-
Mendoza et al. 2023; Frank et al. 2024; Palka et al. 2011; Yang et al. 2011]. Nevertheless, none of
the existing work focuses on finding soundness and completeness bugs in PMC analyzers due
to two main challenges. First, they struggle to generate valid and interesting pattern-matching
expressions because of limited support for pattern matching and type construction. In fact, most of
existing program generators rarely include pattern matching in their resulting programs, making
them unsuitable for testing PMC analyzers. Second, they lack a test oracle [Weyuker 1982], that
is, a way to determine the expected behavior of the analyzer under test in response to a given
input. Without such an oracle, there is no way to verify whether the compiler’s exhaustiveness and
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redundancy checks are implemented correctly. For example, suppose we have already solved the
first challenge and developed a generator that produces the Scala program shown above, without
knowing in advance whether its pattern-matching expression is exhaustive. How can we tell whether
the scalac’s warning about exhaustiveness is right or wrong without having to rebuild our own
reference implementation of pattern-match coverage analysis?

Approach: To address these challenges, we introduce IkARos, an effective tool for detecting bugs
in pattern-match coverage analyzers. IkaAROs achieves this by (1) efficiently generating diverse
and complex pattern-matching expressions and (2) employing two approaches for constructing
test oracles to identify coverage analysis bugs. Specifically, Ikaros features a generator for com-
plex algebraic data types (ADTs), involving various features, such as polymorphism, and generalized
algebraic data types (GADTs). Using these ADTs, IkAROS systematically produces pattern-matching
statements using two distinct generation strategies. To establish the test oracle, IKAROS generates
both exhaustive and inexhaustive patterns, either by construction or by encoding them as SMT for-
mulas. The latter allows IkAROs to reason about exhaustiveness using a constraint solver, and then
expose soundness and completeness bugs whenever the compiler’s coverage analysis results are
not aligned with the result of the constraint solver. Additionally, IkAROs employs an intermediate
representation (IR) that enables seamless transformation of generated pattern-matching statements
into multiple programming languages.

Results: Ikaros currently generates test programs for Scala, Java, and Haskell, but its approach
is easily portable to any language with ML-like pattern matching. We evaluated IkAros on the
PMC analyzers integrated into these compilers. Despite these components being a small portion
of the compiler codebase, they are prone to both soundness and completeness bugs. IkaAros has
uncovered a total of 16 bugs, 12 of which have been fixed by developers. We also evaluated IKAROS’s
throughput and the types of bugs it detects, demonstrating its efficiency in uncovering diverse
issues. IKAROs generates dozens of test programs per second, with most discovered bugs stemming
from incorrect implementations of GADT reasoning [Graf et al. 2020].

Contributions: Our work makes the following contributions:

e A novel generator for algebraic data types and pattern-matching expressions.

e Two distinct strategies for automatically constructing test oracles that expose soundness and
completeness bugs in pattern-match coverage analyzers.

e An openly-available and extensible implementation called Ikaros that is currently capable of
producing programs in Scala, Java, and Haskell.

e An in-depth evaluation of IKAROs in terms of its bug-finding capability and performance. Us-
ing IkAaRrOs, we have discovered 16 bugs in pattern-match coverage checkers integrated into
popular languages, 12 of which have been fixed by developers.

2 llustrative Examples and Background

To motivate our approach, we discuss two illustrative examples of bugs in real-world pattern-
match coverage analyzers.
Soundness bug in scalac: Figure 1a presents a soundness bug in the PMC analyzer integrated into
the compiler of Scala. Here, the code defines a generalized algebraic data type (GADT) containing
three constructors. Two of them yield values of type A<Int> (lines 2, 3), while the third one returns
values of type A<Char>. Later, the code constructs the object CC_B(CC_A()), which is assigned to
a variable called x of type A<Int>. (line 6). In turn, the Scala program pattern-matches against this
variable by considering two cases (lines 8—11).

Compiling the program with scalac (version < 3.6.0) produces no warnings. However, executing
the compiled bytecode leads to a runtime exception, specifically a MatchError. This is because
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sealed interface A {}
record CC_A(Q) implements A {}
record CC_B() implements A {}

sealed trait A[T]
case class CC_A() extends A[Int]
case class CC_B[T](x: A[T]) extends A[Int]
case class CC_C() extends A[Char] sealed interface B {}
record CC_C(A a, A b) implements B {}
val x: A[Int] = CC_B(CC_AQ)
B x = CC_C(CC_BO, CC_BO);
int y = switch(x) {
case CC_C(CC_AQ, CC_LAQ) > 1;
// case CC_C(CC_BQ), CC_BQO) -> 2;
case CC_C(CC_BQ, ) -> 2;
case CC_C(_, CC_BQ)) -> 3;
}

(b) A completeness bug in javac.

O PN U R W N =

val y: Int = match x {
case CC_LAQ =>1
case CC_B(CC_B(L)) => 2
}
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(a) A soundness bug in scalac.

Fig. 1. llustrative bugs found by our approach in various pattern-match coverage analyzers.

the match expression on lines 8-11 is unsafe: the value of variable x, namely CC_B(CC_AQ)), is
not covered by either pattern CC_A() (line 9) or pattern CC_B(CC_B(_)) (line 10), violating the
exhaustiveness property. The expected behavior is that the compiler should have issued a warning
to alert programmers about the inexhaustive patterns. The issue was confirmed and subsequently
fixed by the scalac developers, with the fix integrated into version 3.6.0 and later.
Completeness bug in javac: Pattern matching has been recently added to JDK 22 [Gosling et al.
2024]. Java programmers can encode algebraic data types through the combination of interfaces
and record classes. Pattern-matching against ADTs in Java are then expressed through an enhanced
version of the otherwise long-standing switch construct.

Figure 1b illustrates a Java program ', where we define two ADTs. The first ADT called A consists
of two constructors: CC_A and CC_B (lines 1-3), where none of them takes any parameters. The
second ADT called B is implemented by a single constructor CC_C (line 6), which receives two
parameters, both of type A. The code defines and initializes a variable of type B, and then performs
pattern matching on it using three cases (lines 8-14). The are four possible values of type B:

e CC_C(CC_AQ), CC_AQ):Itis covered by the first case in the switch expression (line 10).

e CC_C(CC_AQ, CC_BO):Itis covered by the third case in the switch expression (line 13).

e CC_C(CC_BQ), CC_AQ):Itis covered by the second case of the switch expression (line 12).
e CC_C(CC_B(Q), CC_BO)):Itis covered by the second case of the switch expression (line 12).

Since all possible values of type B are covered by the switch expression, the switch expression
is exhaustive. However, a bug in the implementation of javac causes the compiler to mistakenly
flag it as inexhaustive. Consider replacing the second case (line 12) with the commented-out code
(line 11). Since we are replacing a wildcard pattern (corresponding to the second parameter of CC_C)
with a specific sub-pattern (CC_B()), we are not making the switch expression cover anything
more. Interestingly, this commented-out modification changes the output of the compiler, as it no
longer claims that the switch statement is inexhaustive, even though it covers less or equally as
many cases as before. This completeness bug was found in JDK 22 and fixed in JDK 24 onwards.

Challenges: Identifying completeness and soundness bugs in PMC analyzers, such as the ones
presented above, presents several challenges. First, these bugs arise from complex interactions of
pattern-matching features. For example, triggering the scalac bug requires generating a GADT,
while the javac bug depends on constructing a switch expression with deeply-nested patterns
arranged in a specific order. Existing random program generation techniques are not designed to
produce programs that exercise pattern-matching features. Furthermore, the search space of patterns

1For readability, we use _ to denote wildcard patterns, even though this is not valid Java syntax. In actual Java code, a
pattern like CC_A(_) would be written as CC_A(var x)
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Fig. 2. The high-level overview of our approach for finding bugs in pattern-match coverage (PMC) analyzers.
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grows exponentially with the structure of ADTs, making it difficult to identify the specific pattern
combinations that trigger bugs. For example, as demonstrated in Figure 1b with the commented-out
code, not all pattern combinations expose issues.

Second, even with a generator for pattern matching, we still need a test oracle [Weyuker 1982] to
determine the expected behavior of PMC analyzers. For example, we need to automatically figure
out that the switch expression in Figure 1b is exhaustive, and therefore, the expected behavior of
javac is to accept the program. Doing so by building a reference implementation from scratch is
impractical, as PMC analyzers are complex to implement [Graf et al. 2020], especially in the presence
of features such as GADTs [Garrigue and Le Normand 2017]. Differential testing [McKeeman 1998]
across languages is also problematic, as one language may support pattern-matching features that
are not available in the other language, thus limiting generalizability.

3 Approach

Figure 2 outlines our approach for finding completeness and soundness issues in PMC analyzers,
which we illustrate using the Scala program of Figure 1a.

e Step 1. ADT Generation (Section 3.2.1): The process begins with the generation of random
algebraic data type declarations (ADTs) for pattern matching. These ADTs are encoded into a
graph representation called data type graph (Section 3.2.2), which captures the type constraints
imposed by constructors, particularly in the presence of generalized algebraic data types (GADTs).
For example, the output of this step is the ADTs shown on lines 1-4 (Figure 1a).

e Step 2. Type Selection (Section 3.3.1): Once the ADTs are generated, our approach randomly
selects and constructs a type t from the pool of generated ADTs. This type is used to construct
patterns that match against it. For example, for the program of Figure 1a, the approach randomly
constructs type A<Int> (line 6).

o Step 3. Pattern Generation (Section 3.3): This step systematically generates diverse patterns
that cover values of type t. The output of this step consists of two parts: (1) a pattern-matching
expression that contains all generated patterns (Figure 1a, lines 8-11), and (2) a test oracle that
describes the expected behavior of the PMC analyzer under test. For example, applying this
step ultimately yields the Scala program in Figure 1a, where the match expression is known to
be inexhaustive.

Pattern generation strategies: For Step 3, we introduce two distinct strategies for pattern
generation: refinement-based pattern generation (RefPG), and random program generation (RngPG).
RefPG produces new patterns by iteratively splitting a general pattern into multiple, more specific
sub-patterns. The process ensures that these sub-patterns cover the exact same set of values as the
original pattern. In contrast, RngPG considers all possible patterns derived from each constructor
of type t and combine a sample of these patterns in a random manner.

Establishing the test oracle: Our work focuses on defining a test oracle to verify the exhaustiveness
of generated patterns. In RefPG, the test oracle is implicit, as patterns are constructed to be
exhaustive or inexhaustive by design. However, in RngPG, exhaustiveness is not known during
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(P € Program) := die

(d € DataType) ::= datatype T<p> = k (teTypey :==¢ | T | L
(e € Expry z==c | varx:t=e Bool | Int | Char
| matchewithp —'e T<d> | (T<¢>)<t>

(p € Pattern) ==c | _:t | C | Cp (¢ € TypeVariable) ::= the set of type variables
(k € Constructor) == C :t — t (T € TypeName) ::= the set of type names
(C € ConstructorName) ::= the set of constructor names
(x € VariableName) ::= the set of variable names (b) Types
(a) Syntax

Fig. 3. The syntax and the types of IR.

generation. To address this, patterns are encoded as SMT formulas, and an automated theorem
prover determines their exhaustiveness based on the given constraints (SMT encoding).

IR: Our approach promotes generalizability. The generated pattern-matching expressions are
written in an IR (Section 3.1). Each test program is lowered into a program in the target language
under test (e.g., Scala, Haskell) and given as input to the corresponding PMC analyzer. Finally, our
approach validates the analyzer output against the test oracle. If the compiler output is incompatible
with the oracle (e.g., the analyzer reports inexhaustiveness while the oracle confirms exhaustiveness),
our approach reports a potential bug in the PMC analyzer. In the subsequent sections, we describe
each step our approach in detail.

3.1 Preliminary Definitions

First, we present some preliminary definitions and terminology used throughout the paper.

IR: Figure 3 presents the syntax and the type system of IR;,, a minimal intermediate representation
designed to support ADTs and pattern matching. We use IR,, to illustrate the fundamental concepts
of our approach. Notably, IR, is intentionally minimal so that it has a direct correspondence with
any programming language supporting ML-like pattern matching. The language supports GADTs,
mutually recursive data types, and nested patterns. However, it does not offer support for more
advanced features, such as guarded patterns, pattern synonyms, non-linear patterns, or strict types.
In what follows, the notation e represents an ordered list of elements.

A program in IR, is a sequence of data type declarations followed by a sequence of expressions.
Each data type declaration defines a new type and includes (1) a name 77, (2) a list of type variables
a (if the type is polymorphic), and (3) a sequence of constructor definitions. A constructor, in turn,
has a name C, takes a list of formal parameter types £, and yields a return type that corresponds to
the enclosing data type. Notably, the IR, supports generalized algebraic data types (GADTs), as
each constructor can constrain the type parameters of the data type by specifying its own type
arguments. The grammar of IR, also supports recursive data types.

IR, includes three types of expressions: constants, variable declarations, and pattern-matching
expressions. A pattern-matching expression attempts to match a list of patterns p against a given
expression e. A pattern can be a constant ¢, a wildcard (_ : t) that matches every value of type ¢, a
constructor name C, or a constructor name C followed by list of sub-patterns p.

The types in IR, include standard types (e.g., Int, top, and bottom types), type variables (¢), and

type constructors of the form 7<¢>, which are derived from (polymorphic) data type declarations.
If the list of type parameters ¢ is empty, the type is not considered polymorphic. Additionally, type

constructors can be applied to a given list of types, denoted as (7’<$>)f, where  represents the
applied type arguments. For notational convenience, we use the shortcuts 7~ for 7<0>, and 7 <t>
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datatype A<T> =

CC_A — A<Int>
CC_B A<T> — A<Int>
CC_C — A<Char>
T+ Int [T+ Int \T + Char

val x: A<Char> = ...
match x with
cC_C—-1

cC A CcC B cc c

eI B N L

Fig. 4. An example data type declaration and its corresponding data type graph.

for (7<¢>)t. In the example IR, programs shown in the following figures, we may use parentheses
for nested patterns and represent the wildcard pattern as _ instead of _ : t for better readability.
Auxiliary definitions: We use the auxiliary function constructors : DataType — P (Constuctors)
that, given a data type definition d, returns the set of constructors that are part of d. Similarly, we
define function parameters : Constructor — P (Type) that gives the set of formal parameter types
of a given constructor.

Our language IR, supports the use of the type substitution operation. A type substitution
o € X = [¢ — t] is a mapping that replaces every occurrence of a type variable ¢ with a specific
type t. The application of a type substitution o to type ¢ is given by ot. For two type substitutions
01, 02 € %, we have the subsumption relation o1 E 02, which means that oy is at least as general as
0y: every type variable in o7 is mapped to exactly the same type as in o,. The empty substitution e
is always subsumed by any other substitution (Vo € X.€ C o).

We define the function decompose : Type — 3 x Type, which given a type t, returns a pair (o, t'),
where o is a type substitution and ¢’ a type such that applying o to ¢’ reconstructs the original type
t (ie., t = ot’). In essence, if the input type ¢ is a polymorphic instance (e.g., List<Int>), decompose
returns the type constructor of ¢ (e.g., List<T>) along with the substitution that instantiates it
(e.g., [T = Int]).If ¢ is non-polymorphic, the function returns an empty substitution € and ¢ itself.

Finally, when we say that a pattern p € Pattern covers a set of values V denoted as [p] =V, it
means that if an expression evaluates to any value v € V, the pattern p successfully matches .
Example: An example data type declaration is shown in Figure 4. Here, the code defines a GADT
named A that involves three constructors. The first two constructors return a value of type A
instantiated by type Int (lines 2-3), while the last constructor returns a value of type A<Char>
(line 4). The match expression contains a single pattern (CC_C) that matches against a value of type
A<Char> (lines 6-8). The match expression is exhaustive, as the missing constructors CC_A and
CC_B yield values of type A<Int>, and not A<Char>.

3.2 Random Generation of ADTs and Data Type Graph

3.2.1  Random Generation of ADTs. As shown in Figure 2, our approach begins with ADT generation.
This is a key element because it provides us with the types that we later match against (Section 3.3).
Generating our own ADTs is straightforward: we create data types randomly. Our approach employs
a configuration c to steer the data types into a direction where more complex types are possible.
Among other things, this configuration c¢ controls (1) the number of the generated data types
per program, (2) the number of constructors per data type, (3) the number of parameters each
constructor takes, (4) the balance between polymorphic ADTs and GADTs, or (5) whether the
constructor’s parameter is itself a data type, enabling nested patterns. All generated ADTs conform
to the grammar of IR, (Figure 3) under the specified configuration c. Any well-formed ADT from IR,
including GADTs, mutually recursive types, and uses of built-in types (Int, Bool), can be produced
by our random generator.
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3.2.2 Data Type Graph. In the presence of GADTs, there are type constraints that influence which
constructors can produce values of specific types. These constraints arise because each constructor
can restrict how the type parameters of the data type are instantiated (Figure 4). To precisely capture
the type constraints of GADTs, we represent each generated data type declaration (Section 3.2.1)
through a graph called data type graph, which encodes the constructors of a data type along with
the type constraints imposed by each constructor. This graph representation is inspired by similar
approaches used to model type constraints in previous work [Koppel et al. 2022; Sotiropoulos et al.
2024]. However, unlike prior work, which primarily focuses on capturing the dependencies of
polymorphic APIs in software libraries, our approach specifically models type constraints within
data types. Overall, data type graphs serve two main purposes (formally defined later):

o Constructor lookup for a given type. The graph allows us to easily identify constructors associated
with a specific type ¢. Specifically, given a type t, we query the graph to efficiently determine
which constructors produce values of t by considering only those whose type constraints are
compatible with the constraints imposed by t.

e Identification of inhabited types. The graph helps determine which specific types can be used in
pattern-matching expressions (see Section 3.3.1) without yielding empty matches. By leveraging
the graph structure, we can construct valid type instantiations that correspond to existing
constructors. This prevents us from considering types known to have no constructors, therefore
reducing unnecessary computation.

Formally, we define a data type graph as a directed graph G = (N, E). Anode n € N is either
a type t € Type or a constructor k € Constructor. The edges in the graph are labelled as follows:
E € N X N x X, where X is the set of substitutions that impose constraints on the type parameters

of the data type. An edge ¢ 2 k indicates that the constructor k yields a value of type t under the
constraint o € 3. The graph is straightforwardly built on-the-fly while randomly generating ADTs
as discussed in Section 3.2.1. Specifically, given a program P € Program written in IR

e For each data type definition d in P, iterate over its constructors given by k € Constructors(d)
and add k to the graph. Then, examine the return type ¢ of k.
e Decompose the return type ¢ of the constructor k as decompose(t) = (o,t’), where o represents

the type substitution and ¢’ the base type before applying o. Then, add edge ¢’ Z k to the graph.

Example: Figure 4 presents a program that defines an ADT and its data type graph. In the
graph, the type A<T> is represented by a circle node, which is connected to its constructors
(represented as box nodes). Each edge connecting A<T> to a constructor is labeled according to the
type substitution that represents the constraints imposed by the constructor on the type parameter
of A<T>. Specifically, the edges for constructors CC_A and CC_B are labeled with their respective
type constraints (i.e., [T + Int]). On the other hand, the constructor CC_C constrains A<T> with
the constraint [T — Char].

Operations: We next define two operations on data type graphs.

Definition 3.1 (Constructor lookup). Let lookup : G X Type — P (Constructor) be a function that,
given a data type graph G and a type t, returns all constructors that produce values of type ¢. It is
formally defined as:

lookup(G, t) = {k|t' 5 k € G, decompose(t) = (o, t'), ¢’ C o}
The function lookup takes a type t and decomposes it into (o, t’). Then, it examines all edges that

originate from node ¢’ denoted as t’ Z, k, and checks whether the type substitution ¢’ associated

Proc. ACM Program. Lang., Vol. 9, No. OOPSLAZ2, Article 393. Publication date: October 2025.



Validating Soundness and Completeness in Pattern-Match Coverage Analyzers 393:9

with the edge (imposed by the constructor k) is compatible with the substitution imposed by the
given type t. If compatibility holds, the constructor k is considered to yield values of type t.

For example, consider again the data type graph G shown in Figure 4. Applying
lookup(G, A<Char>) results in {CC_C}. This follows from the decomposition of A<Char> into

(o, A<T>), where o = [T + Char]. Since the edge A<T> 2, CC_C exists in the graph G, the con-
structor CC_C is added to the resulting set. On the other hand, the other two constructors are not
selected because their incoming edges are associated with a type substitution ¢’ = [T — Int],
which is incompatible with ¢ (¢ Z o), that is, o/ (T) # o(T).

Definition 3.2 (Inhabited types). We define the function types : G — P (Type), which takes a
data type graph G and returns the set of inhabited types, that is, types for which there exists at
least one constructor that produces values of those types. It is formally defined as follows, where
the function leafs returns all leaf nodes in a given graph:

types(G) = {ct|t > k € G, k € leafs(G)}

Back to the example of Figure 4, applying function types to the graph yields the set of inhabited
types {A<Int>, A<Char>}.
Remark on inhabited types: Definitions 3.1 and 3.2 are intentionally relaxed: Definition 3.1 treats
a constructor as inhabiting a given type if it produces a value of that type. In turn, Definition 3.2
considers a type inhabited if it has at least one such constructor. Importantly, these definitions do
not require the constructor’s arguments to be inhabited. To illustrate this, consider the following
code:

1 datatype A<T> =

2 CC_A — A<Int>

3 datatype B<T> =

4 CC_B A<Char> — A<T>
5 wvar x: B<Int> = ...

6 match x with
7 CCB_—1

We match against the type B<Int> (line 6), which has a single constructor CC_B (line 4). However,
this constructor requires an argument of type A<Char>, which is uninhabited. As a result, it is not
possible to create a valid value of type B<Int>.

While the type B<Int> is technically uninhabited in practice, our definitions still treat them
as inhabited. Why? One might argue that removing the pattern CC_B _ (line 7) is safe, since no
concrete value can match it. However, many languages (including those we evaluate in Section 5)
support bottom values, which are special values that inhabit all types, such as null in Java and
Scala or undefined in Haskell. As a result, the type B<Int> can be inhabited by a value like
CC_B(null), which in turn matches the pattern CC_B _. Removing the pattern would therefore
cause the PMC analyzer in those languages to (correctly) report a missing case.

In contrast, languages without bottom values, especially those with strict types and strict con-
structor fields (e.g., using the ! annotations in Haskell or the -XStrictData option in the Glasgow
Haskell Compiler), would require a stricter notion of Definitions 3.1 and 3.2. In such languages, a
type is inhabited only if all of its constructor arguments are also inhabited. Our approach does not
currently assume and exercise these stricter semantics, but it could be extended to accommodate
them (see Section 5 for further discussion).
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3.3 Generation of Patterns

Having generated a set of ADTs and the corresponding data type graph (Section 3.2), the next step
is to generate interesting and diverse pattern-matching expressions derived from these ADTs.

3.3.1 Selecting Type to Match Against. Before proceeding with the step of pattern generation, our
approach first selects a type to match against (type selection, Figure 2). Selecting a good type to
match against is crucial, because if the selected type does not have any constructors, it is impossible
to generate meaningful patterns. For this reason, we intentionally exclude cases involving empty
matches, as we consider them less important for our testing goals. While we could relax this
restriction to allow matches over types with no constructors, such cases typically result in trivially
exhaustive matches with no real pattern-matching logic.

To disregard empty matches, we employ Definition 3.2, which allows us to match against only
inhabited types. Specifically, our approach applies the function types to the data type graph G
(Definition 3.2), and obtains the set of inhabited types T. In turn, we randomly select a type ¢ from
T. Since there might be constructors that do not fully constrain the type parameters of a data type
(especially if the data type is not a GADT), the selected type ¢t might not be fully instantiated. To
address this, we proceed as follows:

e Step 1: Decompose the selected type t as decompose(t) = (o1,t").

e Step 2: Instantiate unconstrained type parameters: For each type parameter in type ¢’ that is not
already mapped by substitution o7, we generate a new substitution o, by assigning it a random
type from the typing context, without enforcing any constraints, such as requiring the selected
type to be inhabited. The typing context includes standard built-in types in IR,, such as Bool,
Int, Char (Figure 3), and all data types generated in the program. This typing context therefore
includes both regular types and type constructors. If a type constructor is randomly chosen from
the context, it is recursively instantiated with random types. To avoid infinite recursion (e.g.,
A<A<A<...>>>), we impose a bound on type nesting depth. Once this bound is reached, only
the non-polymorphic types in the context are considered for instantiation (e.g., Int).

e Step 3: Compute the final type to match against: The selected type to match against is then
given by applying the type constructor ¢’ to the combined substitution, that is, (o7 U 03)t’.

This procedure ensures that we always select a fully instantiated type, even when some of its type
parameters are unconstrained by its constructors.
Example: Assume the following ADT and its corresponding data type graph G:

datatype A<X, Y> =
CC_A — AX, Y>
CC_B — A<X, Int>

In this scenario, Definition 3.2 gives us two inhabited types given by types(G) =
{A<X, Y> A<X, Int>}. Suppose the type t = A<X, Int> is selected for pattern matching. We
observe that ¢ is not fully instantiated, as the type parameter X remains unconstrained by the
corresponding constructor CC_B. Therefore, we proceed with the three steps described above:

o Step 1: We decompose ¢ to get its partial substitution oy and its type constructor t’. That is,
decompose(t) = ([Y + Int,t’), where t' = A<X, Y>.

e Step 2: We instantiate the type parameter X, which is not constrained by o7 using a random
type from the context {Bool, Int, Char, A<X, Y>}. Assuming that the type Bool is randomly
selected, this yields the substitution o, = [X +— Bool].
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e Step 3: We apply the type constructor t’ = A<X, Y> to the combined substitution o; U 0, and
obtain a fully instantiated type, which is guaranteed to be inhabited that is, [X + Bool,Y —
Int]A<X, Y> = A<Bool, Int>.

Beyond selecting a type to match against, a pattern-matching expression requires a set of patterns
that attempt to cover values of this type. To do so, our approach proceeds with pattern generation
(Figure 2), where it leverages two different generation strategies namely, refinement-based pattern
generation (RefPG) and random pattern generation (RngPG).

3.3.2 Refinement-Based Pattern Generation. The high-level idea of RefPG is that the generation
process starts with a general pattern p (e.g., the wildcard pattern) and iteratively generates new
patterns by decomposing the original pattern into a list of complex, more specific sub-patterns.
These sub-patterns together fully cover the same values as p, ensuring that any value covered by
the original pattern p is also covered by these sub-patterns. To formalize the idea, we introduce the
concept of pattern refinement.

Definition 3.3 (Pattern refinement). Let p € Pattern be a pattern, and let V be a set of values
covered by p, denoted as [p]] = V. Now, consider A, an ordered list of patterns A = {p1, p2, . - ., Pn)-
We say that A refines pattern p written as p = A, iff

e the union of all refined patterns A fully covers V: UL [pi] =V
e the patterns in A are mutually exclusive (no overlap between patterns in A): [p;] N [[p;] = 0 for
1<i<j<n

The definition above ensures two key properties. First, the refined patterns A are a safe replace-

ment of p, meaning that the patterns in A do not miss any values covered by p. The second property
is that the patterns in A are disjoint. This means that no pattern in A is redundant or unreachable,
that is, patterns later in the list capture new values not covered by earlier patterns.
Realization of pattern refinement: Now, we explain how we realize the concept of pattern
refinement in the context of our IR,. We provide a concrete implementation of the function refine
that takes a pattern p € Pattern and a data type graph G, and produces a list of patterns A that
refines p, that is p = A, as follows.

refine(p,G) = (p) ifp=Cvp=c
refine(_:t,G) =(C p | (C :t; — t;) € lookup(G,t),p =_: 1)

refine(C p,G) = (C p’ | p’ € refine(p,G))

The implementation of refine works as follows. If the given pattern is a constant or a constructor
with no parameters (sub-patterns), refinement is not possible. In this case, refine returns a singleton
list that contains the pattern given as input. If the pattern to be refined is a wildcard of type t,
then refine retrieves all the available constructors that yield values of type t using the lookup
function (recall Definition 3.1). For each constructor given by lookup, a corresponding pattern is
created. If the constructor has parameters, wildcards are used as sub-patterns to ensure that all
values generated by the constructor are covered. Finally, if the input pattern is C p, we recursively
apply refine to the sub-pattern p.

THEOREM 3.4 (CORRECTNESS OF REFINEMENT). For any pattern p € Pattern and data type graph
G, refine(p, G) = A such that p = A. This means that the list A returned by refine satisfy the two
properties stated in Definition 3.3.

Proor. The proof follows straightforwardly by induction on the structure of patterns in IR,. O
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datatype A<T> =

1
1 datatype A<T> = 1 datatype A<T> = 2 CC_A — A<Int> 1 datatype A<T> =
2 CC_A — A<Int> 2 CC_A — A<Int> 3 CC_B A<T> — A<Int> 2 CC_A — A<Int>
3 CC_B A<T> — A<Int> 3 CC_B A<T> — A<Int> 4 CC_C — A<Char> 3 CC_B A<T> — A<Int>
4 CC_C — A<Char> 4 CC_C — A<Char> 5 4 CC_C — A<Char>
5 5 6 let x: A<Int> = ... 5
6 6 let x: A<Int> = ... 7  match x with 6 let x: A<Int> = ...
7  let x: A<Int> = ... 7  match x with 8 CCA—>1 7 match x with
8 match x with 8 CCA—>1 9 CC_B(CC_A) — 2 8 CCA—>1
9 _—1 9 CC_B(L) — 2 10 CC_B(CC_B(L) — 3 9 CC_B(CC_B(L)) — 3
1

(a) Initial pattern (b) Refined patterns ' e = (d) Inexhaustive patterns

(c) Final refined patterns

Fig. 5. The steps of refinement-based pattern generation. The process starts with the most general pattern
(wildcard) that covers all possible values of the type we match against (Figure 5a). The general patterns are
iteratively refined to yield to multiple, more specific patterns. Figure 5c gives the set of the generated patterns
after two iterations. Figure 5d presents inexhaustive patterns after removing patterns from Figure 5c.

Algorithm 1: Algorithm of refinement-based pattern generation.

1 fun refine_gen(G,t)=

2| Poge—10

3 Pew < (_: 1)

4 | while P,y # Ppew A not stop_gen() do

5 Poig < Prew

6 for p € P,y do

7 if flip_coin() then continue

8 A « refine(p, G)

9 Prew < replace p with A in Ppey,

10 return P,

Algorithm of pattern generation based on pattern-refinement: After establishing the concept
of pattern refinement, we now present the algorithm for generating patterns based on this notion.
Refinement-based pattern generation (RefPG) is summarized in Algorithm 1, which we will illustrate
through an example.

Consider again the ADTs shown in Figure 4 (lines 1-4). Assume that we want to generate patterns
that match values of type t = A<Int>. Algorithm 1 takes as input (1) the type we match against
(t), and (2) the data type graph G, which encodes the ADTs of the program (Algorithm 1, line 1).
The first step of RefPG is to produce the most general pattern that captures every possible value of
the given type t (line 3). This stands for the wildcard pattern as shown in Figure 5a. Every pattern
generated by the algorithm (including the wildcard pattern, line 3) is stored in a list called Pe,.

The algorithm iterates over each generated pattern in the list p € Py, and decides whether to
refine it further or keep it as is (lines 6-7). This decision is made through a random procedure,
implemented in the function flip_coin(). If flip_coin() decides to refine p, the algorithm executes
lines 8 and 9, where it applies the refine function to p and replaces it with the result of refine.
For example, the wildcard pattern of Figure 5a is refined and replaced with two disjoint patterns,
as shown in Figure 5b. The refinement process continues until either no further refinement is
possible (Pyjg = Ppeyw) or stop_gen() determines that the pattern generation should stop based on
user-provided criteria (e.g., maximum number of generated patterns).

Now, assume the algorithm performs one more refinement step (iteration). In this step, it attempts
to refine the patterns produced in the previous iteration, namely CC_A, CC_B _ (Figure 5b). The
pattern CC_A cannot be further refined because it corresponds to a constructor that takes no
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parameters. However, the pattern CC_B _ can be further refined, and it is replaced by three
additional patterns, as shown in Figure 5c. If stop_gen() decides to terminate at this point, the final
set of generated patterns is as illustrated in Figure 5c.

3.3.3 Random Pattern Generation. Beyond refinement-based pattern generation (Section 3.3.2), we
also introduce random pattern generation (RngPG). The core idea of RngPG is straightforward: given
a type t and a data type graph G, RngPG generates patterns that cover values of t and combine
them in a random fashion, though not necessarily exhaustively. Unlike RefPG, which follows a
structured refinement process to produce disjoint and exhaustive patterns, RngPG does not enforce
any particular structure. Instead, it freely combines patterns in an arbitrary manner. As a result,
RngPG can generate pattern sets with highly varied and unpredictable compositions, such as those
shown in Figure 1b.

Algorithm: The algorithm of RngPG is straightforward: for each constructor k € lookup(G, t)
(Definition 3.1), RngPG generates a set A that contains all possible patterns derived from the
constructor k, up to a specified depth. It then randomly selects a subset from each Ay and combines
them into a pattern-matching expression.

Example: To illustrate RngPG, consider again the ADTs from Figure 4. Suppose that we aim to
generate patterns that cover values of type A<Int>. According to Figure 4, there are two constructors
that produce values of this type: CC_A and CC_B. For each constructor, RngPG constructs a set that
includes all possible patterns derived from it up to a specified depth. For the sake of the example,
we limit the depth to two.

e The set for constructor CC_A is A, = {CC_A}.
e The set for constructor CC_Bis A, = {CC_B(_),CC_B(CC_A),CC_B(CC_B(_)),CC_B(CC_O}.

The last step of RngPG is to take a random sample of each set Ay and combine these samples into
a pattern-matching expression. Suppose RngPG randomly picks the following samples: {CC_A}
from A,, and {CC_B(CC_B(_))} from Aj. These selected patterns are then combined to form the
program shown in Figure 5d.

3.4 Test Oracle

Having presented our approach for producing test programs that contain pattern-matching features
via the generation of random ADTs (Section 3.2) and match expressions (Section 3.3), the next
step is to establish a test oracle that reliably predicts the expected behavior of the PMC analyzer
under test. A PMC analyzer statically verifies two properties: exhaustiveness and non-redundancy.
Exhaustiveness ensures that a pattern-matching expression covers all possible values of the matched
type, preventing runtime errors due to missing cases. Non-redundancy guarantees that no pattern
is unnecessary or shadowed by a preceding one, eliminating unreachable cases. In this work, our
focus is to establish a test oracle associated with the exhaustiveness property, that is a reliable
mechanism to automatically determine whether a match expression generated by RefPG or RngPG
is truly exhaustive or not. We focus on exhaustiveness checking because bugs there can pose a
more severe risk. Our test oracle can be easily further extended to redundancy checking.

We formally define exhaustiveness in pattern matching. In the following, we use function
type : Expr — Type that gives the type t of an expression e.

Definition 3.5 (Exhuastiveness). Let a pattern-matching expression M = (e, p) that attempts to
match a list of patterns p against an expression e. Let [[t] denote the set of all possible values of
type t. We say that M is exhaustive if

Vo € [[type(e)], 3p € p, v € [p]]
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and M is inexhaustive if
Jv € [type(e)]. Yp € p, v ¢ [p]

Based on Definition 3.5, we now illustrate how to build the test oracle for each of the pattern
generation strategies introduced in Section 3.3.

3.4.1 Test Oracle for Refinement-Based Pattern Generation. The algorithm of RefPG begins the
refinement process with the most general pattern (Algorithm 1, line 3; see also Figure 5a), that is the
wildcard pattern. Let us now use the symbol p to denote this wildcard pattern, which exhaustively
captures all possible values of the type we match against. Formally, this means: [[t] = [p_].
Therefore, a pattern-matching expression M = (e, p), where e is an expression of type ¢ and p is
the singleton list (p ), is always exhaustive.

THEOREM 3.6 (EXHAUSTIVENESS OF REFINED PATTERN MATCHING). Let the most general pattern p _,
and a list of patterns A such that p = A. The pattern-matching expression Ma = (e, A) is exhaustive.

Proor. By Theorem 3.4, any list of patterns A = (p1, p2, . .., pn) that refines p satisfies the two
properties stated in Definition 3.3. This ensures:

e =11
i=1
Thus, we have

Yoe[p ], IpeA velp].

Since we know that p_covers all values of the matched type t = type(e), it follows that [¢] = [[p_]
Consequently, we know that

Yo e [t], Ip € A, v € [p].

Therefore, for the pattern-matching expression My = (e, A), every possible value of type ¢ is
matched by at least one pattern in A. Thus, My is exhaustive by construction. O

Example: By Theorem 3.6, a pattern-matching expression produced by RefPG is exhaustive by
construction. For example, the pattern-matching expression in Figure 5c, which is the result of
RefPG after two iterations, is exhaustive. This is because all the refined patterns originate from
the wildcard pattern shown in Figure 5a, which matches all possible values of the type. If a PMC
analyzer reports the program of Figure 5c as inexhaustive, it suggests a completeness bug in the
PMC analyzer.

Finding soundness bugs using RefPG: To validate soundness in a PMC analyzer, we need to
construct inexhaustive pattern-matching expressions. How can we generate inexhaustive pattern-
matching expressions using RefPG, given that it only produces exhaustive ones? The answer is:
we derive inexhaustive pattern-matching expressions by removing at least one pattern from the
generated set. Because RefPG ensures exhaustiveness by construction, this removal guarantees
that the resulting match expression is inexhaustive. This allows us to systematically test whether
the PMC analyzer correctly detects the missing cases.

THEOREM 3.7 (INEXHAUSTIVENESS OF REMOVED PATTERN). Let the most general pattern p , and
a list of patterns A such that p = A. Removing any pattern in A yields a new pattern list A. The
pattern-matching expression My = (e, A) is inexhaustive.
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Proor. By Theorem 3.4, any list of patterns A = (p1, 2, . . ., pn) that refines p satisfies the two
properties stated in Definition 3.3. Specifically, these properties ensure that the patterns in A are
mutually exclusive and exhaustive, i.e.,

[l O [pil =0, forall1<i<j<n and | JIp:] =[p ]
i=1
Consequently, for any pattern p € A, if a value v belongs to [[p]], then v does not belong to [[p’]
for any other pattern p” € A\ {p}. That is,

velpl = oe [ [p]
p'eA\{p}

Now, consider removing a pattern p from A, yielding a new pattern list A = A\ {p}. Under the
relaxed notion of inhabited types (Definitions 3.1 and 3.2), which considers types inhabited even
when the constructor arguments can only be initialized via bottom values, there must exist some
value v in [[p ] that is not covered by any pattern in A, i.e.,

Foelploe ([ JIp]

p'eA

Since p_is the most general pattern covering all values of type t, it follows that [[¢] = [p_]-
Thus, we conclude that

Foet], Vo' €A ve[p].

This establishes that the pattern-matching expression My = (e, A), where p = A = A\ {p}, is
inexhaustive. O

Example: By Theorem 3.7, removing any pattern from a match expression generated by RefPG
leads to an inexhaustive expression. For example, consider the exhaustive match expression shown
in Figure 5c¢, which is the outcome of RefPG after two iterations. Removing at least one pattern
from this match expression, namely CC_B(CC_A) and CC_B(CC_C), ensures that the resulting
expression in Figure 5d is inexhaustive. If a PMC analyzer reports that this expression is exhaustive,
it suggests a soundness issue in the analyzer. Notably, the inexhaustive IR, program of Figure 5d
uncovered a soundness bug in scalac (see the Scala syntax in Figure 1a).

Finding bugs in redundancy checking: Although our focus is on establishing a test oracle for
exhaustiveness, the disjointness property of RefPG (Definition 3.3) also enables us to uncover bugs
in the redundancy checking functionality of PMC analyzers. Specifically, RefPG guarantees that all
patterns in a refined list A are pairwise disjoint, meaning no pattern is redundant by construction.
As a result, if a PMC analyzer reports redundant patterns in a match expression generated by
RefPG, it indicates a completeness bug in the analyzer’s redundancy checker.

3.4.2 Test Oracle for Random Pattern Generation. In Section 3.4.1, we showed that RefPG guarantees
both exhaustive and inexhaustive patterns by construction. However, this guarantee does not hold
for RngPG. Because of the random nature of RngPG, patterns are generated without a structured
process to ensure exhaustiveness. One way to establish a test oracle for patterns generated by
RngPQG is differential testing [McKeeman 1998] by comparing the results of PMC analyzers across
different languages, such as Scala and Java. However, this approach is impractical and not general,
since each language may support unique pattern-matching features, not available in others. As a
result, mismatches could stem from language differences rather than actual bugs. Developing our
own reference PMC analyzer is also impractical as it would be time-consuming and susceptible to
its own implementation errors.
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1 (declare-sort Int_ 0) 1 (define-funs-rec 1 (declare-fun x () (A Char.))
2 (declare-sort Char_ 0) 2 ((valid ((x (A Int_))) Bool) 2 (assert ((_ valid 0) x))

3 (declare-datatypes ((A 1)) 3 (valid ((x (A Char_))) Bool) 3 (assert

4 ((par (T ( 4 (Cor ((_is (CCLA O (A Int)))) x 4  (not

5 (cc_p) 5 ((_ is (CC_B ((A Int_)) (A Int_))) x) 5 ((C is (CC_.C O

6 (CC_B (CC_B_a (A ™)) 6 ((_ is (CC_C O (A Char_))) x))) 6 (A Char_))) x)))

7 (CC_ONN 7 ) 7 (check-sat)

(a) Declarations of types (b) Constraining applicable constructors (c) Pattern encoding

Fig. 6. Steps of SMT encoding for the exhaustiveness of a pattern-matching expression. The encoding begins
with the declarations of the algebraic data types used in pattern matching (Figure 6a). Next, we constrain the
constructors to their respective return types to ensure valid term generation (Figure 6b). Finally, we encode
the pattern-matching expression as an SMT assertion, enabling automated exhaustiveness checks (Figure 6c).

To address the oracle challenge for arbitrary pattern-matching expressions produced by RngPG,
we encode the exhaustiveness property as an SMT formula and use an off-the-shelf solver to
verify it. If the solver proves exhaustiveness but the PMC analyzer reports the match expression
as inexhaustive, this reveals a completeness bug in the PMC analyzer. Conversely, if the solver
proves inexhaustiveness but the analyzer accepts the match expression, it indicates a soundness
bug in the PMC analyzer. This approach gives us a general, language-agnostic test oracle "for free"
by leveraging the power of constraint solving.

Our test oracle assumes the correctness of the SMT solver, although solvers themselves can
have bugs [Mansur et al. 2020; Winterer and Su 2024; Winterer et al. 2020a,b]. In our evaluation
(Section 5), we encountered only one such issue where a specific formula caused the solver to crash
with a segmentation fault. We reported this bug to the solver developers, who promptly fixed it.
We now describe how pattern-matching expressions are encoded into SMT.

Definition 3.8 (SMT Encoding of the Exhaustiveness of a Pattern-Matching Expression). Given a
pattern-matching expression M = (e, p) and an SMT formula ¢(x), where x is the free variable in
@, we say that ¢ is an SMT encoding of the exhaustiveness of M if: ¢ is unsatisfiable implies that M
is exhaustive, and ¢ is satisfiable implies that M is inexhaustive. Formally, this means:

x, p(x) &= Jo € [[type(e)], Yp € p, v ¢ [[p]-

According to Definition 3.8, encoding the exhaustiveness of a pattern-matching expression into

an SMT formula requires: (1) constraining the variable x to values within [[type(e)] to ensure it
conforms to the matched type, and (2) translating the pattern set p into assertions that represent
the matching logic. We detail the steps of our SMT encoding through the example of Figure 4.
Step 1: Declaration of ADTs: The SMT-LIB language includes a dedicated theory for algebraic
data types. This makes encoding ADT declarations from our intermediate representation (IR) into
SMT-LIB relatively straightforward. For example, given the data type declarations shown in Figure 4,
we can encode them into the SMT-LIB format as illustrated in Figure 6a. First, we declare two
sorts representing the basic types Int (named Int_, line 1), Char (named Char_, line 2). Then,
we declare the polymorphic ADT A that takes one type parameter T (lines 3 and 4). The data type
is initialized by three constructors CC_A, CC_B, and CC_C (lines 5-7), where the constructor CC_B
takes one parameter named CC_B_a whose type is A<T> (line 6).
Step 2: Encoding GADTs: In SMT-LIB, GADTs are not natively supported. As a result, constructors
in SMT-LIB do not constrain the type parameters of their data types. For example, the constructor
CC_A in Figure 6a (line 5) could be incorrectly used to create a value of type A<Char>, even if such
a construction would be invalid in the original program shown in Figure 4.

To encode GADTs in SMT-LIB, we explicitly constrain which data type instantiations each
constructor is allowed to produce values for. For example, in Figure 6b, we introduce two overloaded
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valid functions to constrain values of A<Int>and A<Char>, respectively. The first function, which
operates on an input x of type A<Int> (line 2), ensures that x can only stem from CC_A or CC_B
(lines 4-5). Similarly, the second valid function, which applies to inputs of type A<Char>, restricts
x to CC_C (line 6). This encoding eliminates ill-formed terms at the SMT level, preventing spurious
counterexamples when checking the exhaustiveness of pattern-matching expressions (see below).
Step 3: Encoding patterns: The final step in the SMT encoding process is to transform the
patterns in a given pattern-matching expression into an assertion. Consider the set of patterns p in
Figure 4, which includes only a single pattern p corresponding to CC_C. This pattern attempts to
match an expression of type A<Char>.

Figure 6c presents the final query we make to the solver. We first introduce a fresh variable x

of type A<Char> (line 1). Since SMT-LIB does not inherently handle GADTs, we explicitly filter
out inapplicable constructors using the valid function (Figure 6b; Figure 6c, line 2). This ensures
that x can be initialized only by constructors that yield values of type A<Char>. To encode the
pattern-matching process, we introduce constraints that prevent x from being one of the patterns
in p that appear in the given match expression (lines 3-6 in Figure 6¢). In our example, the match
expression of Figure 4 has a single pattern. Therefore, the constraints on Figure 6¢ (lines 4-5)
ensure that the variable x is not CC_C. Any value of x satisfying the constraints of Figure 6c
represents an uncovered case. If such a value exists (the solver returns SAT), it confirms that the
pattern-matching expression is inexhaustive; otherwise, the expression is exhaustive.
Handling the wildcard pattern: When a match expression includes a wildcard pattern, our
SMT-LIB encoding expands the assertions to exclude all constructors of the matched type. For
example, if the match expression in Figure 4 used a wildcard instead of CC_C (line 8), the final SMT
query would assert: —(x is CC_LAV x is CC_B V x is CC_C).

4 Implementation Details and Discussion

We have implemented the techniques from Figure 2 in a tool called Ikaros, including approxi-
mately 10k lines of Rust code. The current implementation generates programs that exercise the
PMC analyzers integrated into three languages: Scala, Java, and Haskell. Ikaros offers a minimal
command-line interface, where users select the target language and choose a pattern-generation
strategy (RefPG or RngPG). Ikaros also comes with a configuration that controls the generation
process of ADTs and patterns. This configuration influences the complexity of the generated pro-
grams by disabling or enabling certain features (e.g., GADTs) or specifying parameters, such as
the maximum pattern depth or maximum number of constructors per data type. Finally, IkAROs
employs the Z3 constraint solver [de Moura and Bjerner 2008] to obtain the oracle for RngPG.
Generalizability: IkARoOs is extensible to any language that supports ML-like pattern matching.
Adding support for a new language requires implementing a Rust trait that lowers the in-memory
representation (IR) of the generated program into a source file written in the target language. This
extension process is straightforward: for example, it took us a couple of hours to add Haskell
support, which involved writing approximately 600 lines of Rust code.

When adding a new language, Ikaros also allows implementing language-specific typing features.
Beyond types derived from the generated ADTs, IkAROS supports built-in types native to the target
language. For example, our implementation includes basic numeric (e.g., Int) and string types for
all supported languages, while for Haskell and Scala, Ikaros additionally supports tuple types and
patterns against tuples.

Completeness of Ixaros: Our current implementation is not complete, as the formalism of IR,
excludes several features along two dimensions that impact the reasoning of PMC analyzers: (1)
pattern-matching features and (2) typing features.
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Pattern-matching features. IkAROs does not yet support some advanced features, such as guarded
patterns or pattern synonyms, which are available in all the languages considered in this work.
Guarded patterns include arbitrary conditions that PMC analyzers must reason about to determine
exhaustiveness and redundancy. Both pattern generation techniques (Section 3.3) can be extended to
accommodate this feature. In RefPG, we could randomly associate patterns with arbitrary boolean
conditions, ensuring that they still cover values in the program when the condition does not hold.
For example, the exhaustive pattern in Figure 5c¢ could be rewritten as:

1 let y: Int = 2

2 match x with =

3 CCAify>1—51
4 CCA— 1

5 CC_B(CC_A) — 2

6 CC_B(CC_B(L)) — 3
7 CC_B(CC_O) — 4

Our SMT encoding that provides the test oracle for the RngPG method can also be extended
to handle guarded patterns. This would involve translating the pattern conditions into logical
formulas and using an SMT solver to determine pattern exhaustiveness. Similar SMT encodings
have been explored in the domain of refinement types [Vazou et al. 2014, 2017].

Typing features. In addition to pattern-matching features, IkaArRos does not support many typing
features that influence the behavior of PMC analyzers. These include union types and declaration-
site variance in Scala, bounded polymorphism in Scala and Java, strict types and constructor fields
in Haskell, or existential types across all the studied languages. For example, consider the following
Haskell program, which declares an ADT with strict fields via the ! annotation (line 2).

1 data A b where

2 CCA :: !(BChar) - A Db
3 CCB :: Ab

4 data B b where

5 CC_C :: B Int
6

7

8

9

x :: A Int

X = ...

y = case x of
10 CCA_—o1
11 CC_B — 2

IxaRros does not currently generate ADTs that use the ! annotation. Even if it did, doing so would
compromise our existing test oracles. This is because the ! annotation enforces strict evaluation,
which affects the PMC analyzer’s reasoning. In this example, the pattern CC_A _ is considered
unreachable, as it requires an argument of the uninhabited type B Char. However, our current
oracle would incorrectly treat the pattern as reachable, leading to false positives.

As previously discussed, Ikaros provides an extensible framework for introducing new types
and pattern features; we have already extended it for tuples in Scala and Haskell. To support strict
annotations, we would need to (1) strengthen Definitions 3.1 and 3.2 to account for constructor
arguments, and (2) update the SMT encoding accordingly. We leave this extension as future work.
Limitations of refinement-based pattern generation: While RefPG systematically refines and
generates new patterns, it comes with certain limitations. One key challenge is the exponential
growth of the search space when refining cases into all possible sub-patterns. This can quickly
cause the size of the pattern-matching statement to explode. In our evaluation (Section 5.1), we
limit the maximum refinement depth.
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Another limitation lies in the restrictive structure of the generated patterns. This is because

the resulting patterns often exhibit similar structures and properties. For example, RefPG ensures
that patterns never overlap and always form a cross-product of all possible combinations at each
refinement step. This means that every program generated by RefPG could have been produced by
a fully random approach, such as RngPG, but the reverse is not true.
Limitations of random pattern generation: The main limitation of RngPG lies is that it is
biased toward generating inexhaustive patterns (Section 5.3). This bias occurs because deeper
patterns dominate the initial pool of possible patterns per constructor, which makes them more
likely to be selected. However, deeply nested patterns also require exponentially more cases to
achieve exhaustiveness.

5 Evaluation

We evaluate Ikaros based on the following research questions.

RQ1 Is Ixaros effective in finding completeness and soundness issues in pattern-match coverage
analyzers (Section 5.2)?

RQ2 What are the characteristics of the test programs generated by Ikaros (Section 5.3)?

RQ3 What is the performance of Ikaros (Section 5.4)?

5.1 Experimental Setup

Targets: We used Ikaros to validate the correctness of PMC analyzers integrated into three
compilers, namely, the compiler of Scala 3 (scalac), the compiler of Java (javac), and the Glasgow
Haskell compiler (ghc). Since our practical focus is to discover new, previously unknown bugs, we
examined the latest, most stable release of each compiler.

Opportunistic bug-finding experiment: Our opportunistic bug-finding experiment ran over
nine months, during which we tested compilers and developed IkARros in parallel. To facilitate
testing, we set up six automated cron jobs, each targeting a specific compiler (scalac, javac,
or ghc) and a specific pattern generation strategy (RefPG or RngPG). For example, one cron job
executed IKAROs to generate Haskell programs and validate ghc using RngPG, while another did
the same using RefPG. Each cron job ran for 24 hours and was repeated every two days. Note that
we did not run IkARoS continuously for nine months, because we were actively developing the tool
in parallel. For example, we first developed RefPG and after three months we developed RngPG
and its solver-based oracle (Section 3.4).

After each run, we manually analyzed the alerts produced by Ikaros to determine whether they

indicated new bugs or were duplicates of previously known issues. To facilitate this process, we
developed a test-case reduction method (see below).
Input reduction: The programs generated by IkArRos can grow exponentially in size, especially
when the structure of the generated ADTs is complex. This poses challenges when bug-triggering
programs are too large. Reporting such large programs to developers is impractical and counter-
productive [Regehr et al. 2012], as they are difficult for developers to debug and analyze. Existing
test-case reducers, such as C-Reduce [Regehr et al. 2012], are ineffective for minimizing ADTs and
pattern-matching expressions. The key issue is the lack of an oracle to verify whether a reduced
program still triggers the same bug in the PMC analyzer.

To address this, we developed our own test-case reducer tailored for programs with ADTs and
pattern-matching expressions. Our reducer iteratively simplifies ADTs by removing constructor
parameters, constructors, and entire ADTs. Each modification is propagated to dependent patterns,
e.g., removing a constructor parameter also removes patterns referencing that parameter. For
example, consider the patterns CC_A(1) and CC_A(_) in a pattern-matching expression, both
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Table 1. (a) Status of the reported bugs in scalac, javac, and ghc, (b) number of bugs that lead to false
positives (FP) and false negatives (FN) in exhaustiveness checks, false positives (FP) in redundancy checks,
or compilation performance issues (c) bugs revealed by each pattern generation strategy (RefPG or RngPG)
during a 12-hour run by IkaRros.

Status scalac javac ghc | Total  Symptom scalac javac ghe | Total  Pat Gen scalac javac ghc | Total
Unconfirmed 0 1 0 1 Exhaustiveness FP 0 4 0 4 RefPG 36 0 0 36
Confirmed 2 0 0 2 Exhaustiveness FN 7 0 0
Fixed 10 9 0 12 Redundancy FP 4 0 0 4 RngPG 3,642 86 0] 3728
Won't fix 0 1 0 1 Performance 1 0 0 1 (C)

on
Total 12 4 0 16 (b)

(@)

derived from the constructor CC_A Int. If the Int parameter is removed from the constructor,
these patterns are reduced to a single CC_A. Our test-case reducer checks whether after each update,
the updated program still triggers the bug. If not, it reverts the modification and proceeds with
other modifications. Our test-case reducer leverages hierarchical delta debugging to group updates
based on their depth in the AST [Misherghi and Su 2006].

During our testing efforts, we employed our test-case reducer to minimize and simplify every
bug-triggering program produced by Ikaros. The reducer enabled us to easily identify duplicate
bugs reported by IkAros and, on average, reduced program size by 70%.

Configuration: It is important to maintain a balance between bug-finding capability and perfor-
mance. Producing ADTs and patterns that are too complex can lead to programs with hundreds of
patterns, often causing compilers to crash due to out-of-memory errors. To avoid this, we config-
ured Ikaros with controlled limits, including a maximum of 2 ADTs per program, 3 constructors
per data type, 2 type variables, and 5 levels of pattern depth in our evaluation. Our preliminary
experiments confirmed that these settings do not produce pattern-matching expressions that are
overcomplicated.

Hardware: All experiments were conducted on a Linux server (Ubuntu 20.04 LTS) with AMD
EPYC 7742 64-core CPUs and 256GB RAM.

5.2 RQ1: Bug-Finding Results

Table 1a outlines the results from our opportunistic bug-finding experiment. Overall, IKAROS has
uncovered 16, previously unknown bugs, of which 12 have been fixed. Most of the bugs were
discovered and reported in the PMC analyzer of scalac (12), while we also uncovered 4 unique
bugs in javac’s new PMC analyzer. Despite our efforts, Ikaros did not find any new bugs in ghc,
which seems to be the most reliable among the studied compilers given the recent improvements
of its PMC analyzer [Graf et al. 2020]. The discovery and reporting of 16 bugs is already a strong
indication of IkAROS’s effectiveness, especially if we consider that PMC analyzers represent only a
small portion of the compiler codebase. The high number of detected issues suggests that these
components can be challenging to implement correctly given their relatively small size.

A factor that delayed the discovery of new bugs was that some bugs obscured others. In many
cases, we had to wait for developers to fix previously reported bugs before we could uncover and
report new ones. For example, in one scalac case, we reported a bug that developers fixed after a
month. However, once the fix was integrated into scalac, IkKARos generated another program that
triggered an issue with a similar root cause, suggesting that the fix was incomplete or ineffective.
Reproducible bug reports: When reporting a bug, we provided developers with executable
programs that demonstrated its impact. For soundness issues (false negatives in exhaustiveness
checks), we included a program that constructed a value not covered by existing patterns, leading
to a runtime MatchError (Figure 1a). For completeness issues in redundancy checks (discovered
by RefPG, Section 3.3.2), we built programs where the compiler incorrectly flagged a reachable
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case as unreachable. Running these programs demonstrated that the supposedly unreachable case
could, in fact, be executed. The most challenging cases were completeness issues in exhaustiveness
checks, where the compiler mistakenly classified an exhaustive pattern as inexhaustive. In such
cases, constructing a convincing bug report was difficult, as we had to enumerate all possible values
of a data type, like the way we did for the example of Figure 1b. This task became challenging in
certain cases due to exponential growth of values. This is the reason why for one case, it was hard
to convince javac developers, and our report was marked as “won’t fix”.

Comparison of bug-finding capability: To compare the bug-finding capability of the two
strategies, RefPG and RngPG, we conducted a controlled comparative analysis by running both for
12 hours on each compiler and measuring the number of bug triggers detected by each strategy.
Table 1c presents the results of this comparison. After 12 hours, RngPG found 3,728 bug triggers,
whereas RefPG identified only 36. Notably, RngPG not only uncovered significantly more bugs
than RefPG but also detected bugs in the javac compiler, where RefPG failed to find any.

For completeness, Figure 7 presents the cumulative bug count over time, comparing RefPG and
RngPG. The results clearly show that RngPG detects bugs significantly faster in pattern-match
coverage checkers. In total, RngPG finds the first scalac bug within five seconds and the first
javac bug in 389 seconds. In contrast, RefPG takes roughly 30 minutes to find its first scalac bug
and fails to detect any bugs in javac.

5.3 RQ2: Bug and Test-Case Characteristics

Types of bugs: Table 1b presents the types of bugs discovered by Ixaros. The detected bugs have
a balanced spread of implications and manifestations. Most of them (7 out of 16) correspond to
soundness issues in the exhaustiveness checks of PMC analyzers. These are the most critical bugs,
as they lead to false negatives, causing the checker to incorrectly classify inexhaustive patterns as
safe. Notably, all such cases were found in scalac.

scalac also suffers from false positives (4 in total) in its redundancy checks. These bugs cause
the compiler to mistakenly mark reachable cases as unreachable. This type of error is particularly
“sneaky”, as it misleads programmers into trusting the compiler’s report and removing a case that
is actually necessary. This can potentially result in inexhaustive and unsafe patterns.

IxaRos has also detected 4 cases where the PMC analyzers produce false positives when checking
pattern exhaustiveness. All of them were found in javac. As a by-product of our testing efforts,
IkaROs also uncovered a scalac bug that caused a compilation performance issue [Chaliasos et al.
2021]. Specifically, after fixing some of our reported bugs, scalac (version 3.6.0) began to hang
indefinitely in a particular pattern-matching expression consisting of 174 cases. Interestingly, older
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Table 2. (a) Language features that appear in the minimized, bug-triggering test cases of the bugs discovered
by IkAROs, (b) summary statistics about the characteristics of the generated programs.

ID Lang ADT GADT Poly. ADT Constant null

1 Scala O [ ] o o]
2 Scala O [} O O O
3 Scala O 4 O © O Description 5% Mean Median 95% Histogram
4 Scala o O [ ] o o
5  Scala @] [ @] @] [ ] Type declarations 2 4 4 8 o —
6 Scal o ° o O e .
7 Sz:l: 5 ° o j] e Polymorphic types 0 3 2 6 Lalls.._
8 :ca:a o ° o O @  Constructors 1 3 3 6 wlilla__
9 cala O [ ] O C [ )
10 Scala ) o ° e o GADTs 0 2 2 5 Bunl___
11 Scala o g o © O Constructor parameters 0 2 2 3 —mill_
12 Scala @] [} O [ ] [ ]
13 Java ° o o o o Patterns 1 8 2 16 h..
14 Java ° o o o o
15 Java [ ] O O O O (b)
16 Java [ ] O o] O O

(a)

versions of the compiler (< 3.6.0) were able to compile the given program within seven seconds.
This performance regression issue was later resolved in more recent versions of scalac.

Characteristics of test cases: Table 2b provides descriptive statistics on the programs generated
by Ikaros. On average, with the specified configuration (see Section 5.1), each test case contains four
types, three of which are polymorphic. The corresponding constructors have an average of two
parameters, while the generated pattern-matching expressions consist of eight cases, on average.

We also analyzed the language features that contributed to the 16 bugs discovered by Ikaros. To
do so, we manually examined the minimized bug-inducing test cases. As shown in Table 2a, out of
the 16 bugs found by IkARros, 12 bugs involved polymorphic ADTs, and notably, 10 of them were
GADTs. This indicates the complexity of handling GADTs correctly, which aligns with the insights
of previous work [Graf et al. 2020; Karachalias et al. 2015].

Another recurring pattern in scalac bugs involved constructors with uninhabited parameters,
i.e., parameters that can only be instantiated with bottom values like null. Half of the scalac
bugs were triggered by test cases with such constructors (see Figures 9b and Figures 9d for concrete
examples). This suggests that uninhabited types require a more principled handling in scalac,
as exemplified by the discussion about Figure 9d. Four bugs were triggered by non-polymorphic
ADTs, and interestingly, all of them were found in javac. The problematic test cases contained
combinations of (recursive) data types, which made it difficult for the compiler to reason about
the exhaustiveness of switch expressions. As a result, the compiler incorrectly reported false
positives (see Figures 1b and 9c). Finally, two scalac bugs were triggered through the combination
of constant patterns (e.g., an integer constant) and polymorphic ADTs (Figures 9a and 9b), showing
that primitive types can also complicate coverage reasoning.

Comparison of the complexity: To compare the characteristics of programs generated by RefPG
and RngPG, we used the number of patterns at each generated program as a metric. Since both
methods influence only the complexity of match expressions (without affecting ADT generation),
this serves as a direct comparison of their impact. Figure 8 shows that RefPG generates programs
with slightly more patterns than RngPG, and it is the only method that produces programs with
over 50 patterns. However, despite RngPG generating fewer patterns on average, it proves to be
more effective at finding bugs (see Section 5.2). This suggests that diversity in generated programs
is more important than complexity for triggering bugs.

Exhaustiveness trends in RngPG: : We measured the distribution of exhaustiveness results when
using RngPG. Although RngPG selects and combines patterns randomly, it is inherently biased
toward generating inexhaustive pattern sets. Out of 10k programs generated with RngPG, 70.4%
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Table 3. Average performance of Ikaros at different stages, measured per program.

Generation Time Compilation Time SMT Solving Time

RefPG RngPG  RefPG RngPG without timeout with timeout
scalac  747ps 243us  3167ms  3078.9ms 9.6ms 43.5ms
javac 495us 324ps  598.9ms  1027.9ms 9.4ms 47.5ms
ghc 395us 174ps  111.5ms 97.2ms 8ms 40.4ms

were inexhaustive (the solver returned SAT), 25.2% were exhaustive (UNSAT), and 4.4% resulted
in UNKNOWN or timeout responses from the solver. In contrast, RefPG allows for precise and
uniform control over whether the generated patterns are exhaustive or inexhaustive.

5.4 RQ3: Performance

To measure performance, we used IKAROS to generate 10k programs for each target language; 5k
using RefPG and 5k using RngPG. Table 3 presents the average running time for each stage of test
case generation. The generation time includes both the time IkAROS takes to generate a type context
and the time required to generate a pattern-matching statement. Notably, the results show that
the generation time for both RefPG and RngPG is negligible. Naturally, compiling the generated
programs adds some overhead.

The RefPG strategy consists of only two stages (generation time and compilation time) since test
oracles are “baked into” the generator. In contrast, RngPG requires additional time to invoke the
SMT solver for the oracle. To prevent SMT solving from slowing down the testing process, we
imposed a 500ms timeout, discarding any generated program that exceeds this limit. We compare
the average solving time with and without the timeout. The results show that without a timeout,
the solving time is 5 longer, though still relatively minor. In practice, the timeout can be adjusted
to balance throughput and accuracy.

In general, IkAROs achieves a high throughput, with the majority of testing time spent on program
compilation, which is unavoidable. The generation time is minimal, and while SMT solving adds
some overhead, it remains acceptable. Due to the better diversity of RngPG, even with SMT solving,
RngPG still identifies more bug triggers than RefPG, as shown in Section 5.2.

5.5 Examples of Bug-Triggering Programs

Figure 9a: This program exposes a soundness bug in scalac’s exhaustiveness checks. The code
defines an ADT with a single polymorphic constructor that takes a parameter of type T (lines 1-2).
Later, a match expression attempts to pattern-match against CC_A(10), which has type CC_A[Int].
However, the only pattern in the match expression is CC_A(12), which does not cover CC_A(10).
This leads to a runtime MatchError, because scalac incorrectly marked the pattern as exhaustive.
We reported this issue to developers, who immediately fixed the bug.

Figure 9b: This program reveals another soundness bug in scalac’s exhaustiveness checks. It
defines a GADT A[T] with a single constructor that returns values of type A[Char] and takes
two parameters: an Int and an A[Int] (line 2). The match expression includes a single pattern
for CC_A, using the constant pattern 10 for the first constructor parameter and a wildcard for the
second one. However, this pattern is clearly not exhaustive, as it fails to match cases like CC_A(12,
null), resulting in runtime MatchError. Notably, this bug arises only when the second parameter
of the constructor CC_A is an uninhabited type that can be initialized solely with null (Figure 2).
Moreover, the fix for Figure 9a does not resolve this issue, as the bug of Figure 9b is triggered only
when a primitive type and a GADT coexist as constructor parameters (line 2).
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. 1 sealed trait A[T]
1 sealed trait A
2 case class CC_A[T](a: T) extends A 2 case class CC_AGa: Int, b: AlInt])
3 3 extends A[Char]
4

4 val x: CC_A[Int] = CC_A(10) 5 val x: A[Char] = CC_A(10, null)
5 wval res: Int = x match {
6 case CC_AC12) => 0 6 val res: Int = x match {

— = 7 case CC_A(O, ) =0
7 } -

(a) A soundness bug in scalac (exhaustiveness).

[ B N I N

Nl

10
11
12

sealed interface I {}
record A(T a, I b) implements I {}
record B(A a, I b) implements I {}

I x = B(null, null);
Integer res = switch (x) {
case B(ACA(L, 1), 1), AL, B(_, 1)) > 1;
case B(A(B(_, ), ), ) > 1;
case B(_, B(_, 1)) ->2
case B(_, A(_, ACL, 1)) > 3
case A(_, ) > 4
3

(b) A soundness bug in scalac (exhaustiveness).

sealed trait A[T]

case class CC_A[T](a: B[T]) extends A[T]
case class CC_B[T]() extends A[T]

sealed trait B[T]

case class CC_C() extends B[Int]

val x: A[CC_C] = CC_A(null)
val res: Int = x match{
case CC_LA(L) => 0
case CC_BQ) =>1
}
print(res) // prints 0

(c) A completeness bug in javac (exhaustiveness). (d) A completeness bug in scalac (redundancy).

Fig. 9. Sample tests that trigger soundness and completeness bugs in pattern-match coverage analyzers.

Figure 9c: Figure 9c presents a completeness bug in javac’s exhaustiveness checks. The Java
program defines an ADT with recursive structures and multiple constructor parameters. The
corresponding switch expression is quite complex, as it involves multiple and deeply nested
patterns. Despite its complexity, the switch statement is provably exhaustive. javac incorrectly
rejects the program with a compile-time error, claiming that the switch statement is not exhaustive.
This bug affects both older (e.g., JDK 22) and newer (e.g., JDK 24) versions of the compiler. This
bug highlights the difficulty of reporting completeness issues in exhaustiveness checks, as proving
exhaustiveness requires enumerating all possible ADT values and demonstrating their full coverage.
Figure 9d: This code reveals a completeness bug in scalac’s redundancy checks. It defines two
data types, A[T] and B[T], where A[T] (it is not a GADT) has two constructors: CC_A and CC_B
(lines 2 and 3). The match expression operates on values of type A[CC_C], using two patterns:
one general pattern covering all CC_A values and another specifically for CC_B (lines 9 and 10).
However, during compilation, scalac incorrectly warns that the first pattern (case CC_A(_), line
9) is unreachable and redundant, even though it is clearly reachable. Running the program prints
0 (line 12), proving that the pattern is matched and reachable. Interestingly, if the programmer
follows scalac’s suggestion and removes the “unreachable” case, the compiler contradicts itself, as
it issues a new warning: “Match may not be exhaustive: it would fail on pattern case CC_A(_)”. This
bug was found using RefPG, as it creates patterns with no unreachable cases by construction. The
root cause appears to lie in how scalac reasons about constructors with uninhabited parameters
(lines 2 and 9), which reveals an inconsistency in its reasoning, leading to misleading results.

6 Related Work

Compiler testing: Our work is closely related to the field of compiler testing [Chen et al. 2020],
which involves the development of random program generators to validate the implementation
of optimizing compilers or type checkers. Patka et al. [2011] design a program generator built
on QuickCheck [Claessen and Hughes 2000], capable of producing well-typed lambda terms
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based on the typing rules of a typed lambda calculus. This generator has successfully found new
optimization bugs in GHC, particularly in the implementation of the strictness analyzer. Fetscher
et al. [2015] generalizes this approach by deriving a random program generator from a PLT Redex
specification [Felleisen et al. 2009]. Another extension involves producing well-typed lambda terms
that maximize function parameter usage [Frank et al. 2024]. Poperty-based testing and QuickCheck
have been also explored in other domains, such as functional languages for the blockchain [Hoang
et al. 2022] or even object-oriented languages like Java [da Silva Feitosa et al. 2019].

Moving to imperative languages, Dewey et al. [2015] encode the typing rules of Rust into a
constraint logic programming (CLP) problem which enables the generation of either well-typed or
ill-typed Rust programs [Dewey et al. 2015]. CLP-based program generation has been effective in
uncovering precision and soundness bugs in Rust’s type checker. Targeting the type checkers of
JVM languages (e.g., Java, Scala), HEPHAEsTUS [Chaliasos et al. 2022] produces random programs
that rely on complex typing features, such as parametric polymorphism, higher-order programming.
Its extension, THALIA [Sotiropoulos et al. 2024] synthesizes client programs that invoke methods
from complex API definitions in software libraries to stress-test type checkers.

The goal of this prior work is to uncover general bugs in type checkers and optimizing compilers,
rather than in PMC analyzers. To our knowledge, our work is the first to focus on PMC analyzers.
Pattern-match coverage checking: PMC analyzers are integral to those languages that support
ML-like pattern matching. As languages evolve and introduce complex features, such as GADTs [Xi
et al. 2003], guarded patterns, or typed holes, these analyzers often struggle to provide accurate or
precise warnings to developers [Graf et al. 2020; Karachalias et al. 2015]. This has led to extensive
research into new algorithms and approaches for more effective detection of inexhaustive and
redundant patterns [Garrigue and Normand 2011; Graf et al. 2020; Karachalias et al. 2015; Yuan
et al. 2023]. PMC analyzers typically rely on constraint-solving techniques, such as type constraint
solving for GADT-like reasoning [Karachalias et al. 2015] or SMT-based constraint solving for
guarded patterns [Graf et al. 2020; Isradisaikul and Myers 2013]. Krishnaswami [2009] presents a
framework for building PMC analyzers that are correct by construction. This work gives a logical
foundation for ML-like pattern matching by interpreting patterns as proof terms in a focused
sequent calculus via the Curry-Howard correspondence. This ultimately enables coverage checking
and pattern compilation that are correct by construction.

Our work is orthogonal to this prior work. It could be used to validate the correctness of existing
and future PMC analyzers [Cheng and Parreaux 2024], and assessing their limitations.

7 Conclusion

We have presented a systematic approach for identifying soundness and completeness issues
in real-world pattern-match coverage analyzers. The approach features a novel generator for
pattern-matching constructs that produces complex ADTs (e.g., GADTs), and on top of them, di-
verse combinations of (deeply-nested) patterns. To address the test oracle challenge, our approach
leverages two strategies: (1) generating pattern-matching expressions that exhibit specifc prop-
erties (exhaustiveness) by construction, and (2) encoding programs into SMT formulas to verify
these properties using an off-the-shelf constraint solver. When a pattern-match coverage analyzer
produces results that contradict the expected properties, our approach reports a bug.

We have implemented our approach in IKAROS, an extensible framework that can be adapted
to any language supporting ML-like pattern matching. Our evaluation focused on pattern-match
coverage analyzers in Scala, Java, and Haskell, where IkAros uncovered 16 bugs, 12 of which have
already been fixed. Notably, many of these issues stem from unsound GADT reasoning, highlighting
the challenges of implementing sound pattern-match coverage analysis.
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v3.0. It provides the scripts, the data, and the results presented in this work. IKAROs is also available
as an open-source software under the same license at https://github.com/CyrilFMoser/Ikaros.
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